שני אתגרים חדשים בכתיבת סוכני AI
היות ומודלי שפה אינם דטרמניסטיים ואינם צפויים מפתחים שכותבים סוכני AI צריכים להתמודד עם שני אתגרים ייחודיים למערכות אלה:
הראשון הוא כתיבת הפרומפטים. אנחנו רגילים לכתוב "קוד" כלומר טקסט בשפה פורמלית אותו לא ניתן לפרש במספר דרכים והרצה שלו גורמת למחשב לבצע פעולות לפי הסדר שקבענו. בכתיבת סוכן בנוסף לקוד אנחנו כותבים "פרומפט" שזה הנחיות והמלצות לאותה מכונה לא דטרמניסטית. לפעמים ה AI יקשיב להנחיה שלנו, לפעמים יתעלם, לפעמים ייתקע. פרומפט הוא לא קוד אבל הוא גם לא טקסט שמוצג למשתמש.
פרומפט הוא סוג של קוד: אחרי שינוי פרומפט צריך להריץ מחדש את כל הבדיקות, אנחנו משפרים פרומפטים וכשמחליפים מודל צריך לעדכן את כל הפרומפטים שלנו (בדומה לאופן בו אנחנו צריכים לשדרג קוד כשאנחנו מחליפים פריימוורק או מכוונים למערכת הפעלה אחרת).
מצד שני זה לא קוד כמו שאנחנו רגילים לכתוב: פרומפט טוב כולל דוגמאות מעולם התוכן, כדאי לנו לשתף את מנהלי המוצר בכתיבת הפרומפטים ואולי ההבדל הכי גדול הוא שפרומפט לא יכול להיכשל. לא משנה מה נבקש תמיד נקבל מהמודל משהו.
הבדל שני הוא הבדיקות. אנחנו רגילים לנסות להריץ את הקוד שכתבנו ולראות מה קורה. מיטיבי לכת מריצים את הקוד בכמה סביבות למשל בכמה דפדפנים. בכתיבת סוכני AI אני מוצא שאחרי כל שינוי אני צריך לבדוק את אותו דבר 4-5 פעמים כי ההשפעה היא סטטיסטית ולא תמיד נראה את השינוי בהפעלה ראשונה. גם בדיקות אוטומטיות הופכות להיות פחות אמינות - כן בבדיקות יחידה אני אשתמש בתשובות מודל ״שמורות״ רק כדי לראות איך הקוד שלי מתנהג, אבל בבדיקות קצה לקצה קשה להבין מה זה "כשלון בבדיקה". משתמשים שמדברים עם AI רגילים לזה שהשיחה הולכת למקום אחר כל פעם ומוכנים להכיל את גורם ההפתעה. אין לנו עדיין פריימוורקים לכתיבת בדיקות שיודעים להכיל את זה באופן דומה.